Liquid Piston Gas Compressor/Expander

Principal Investigators: Dr. Perry Li, Dr. James Van de Ven, Dr. Terrence Simon

Research Assistants: Brian Carrier and Aleksander Gust

Cost Optimization of a Liquid Piston Compressor/Expander

 Objective: Reduce cost associated with building a liquid piston compressor/expander for application of a compressed air energy storage system. Optimization will result in a system that efficiently and quickly compresses gas for low system price.

Agenda

- Research Motivation/Background
- Gas Compression Thermodynamics
- Liquid-Piston Compressor Concept
- Optimization of System Parameters
- Flow Intensifier Concept

Research Motivation

- Objective: develop method to quickly and efficiently compress gas to high pressure for storage
- Want to store energy as compressed gas and store CO₂ in compact space

Thermodynamics

- Adiabatic process is quick but inefficient (temperature increases)
- Isothermal process is efficient but slow
- Want a quick, near-isothermal process for maximum power density and efficiency

Power Density and Efficiency

- Trade-off between efficiency and power density
- Efficiency= $\frac{E_{store}}{W_{in}}$
- Power Density

$$=\frac{E_{store}/t_c}{V_{cham}}$$

Liquid Piston Concept

- Water pump (bottom) fills compression chamber to compress air
- Valves to high pressure storage (red), low pressure inlet (green)
- Optimize chamber shape, flow rate vs. time, heat transfer inserts, cost

System Overview

Heat Transfer Media

- Porous media adds extra surface area
- Liquid piston can flow through media
- Inclusion of media reduces air temperature, improves efficiency
- 3D printing various designs

System Optimization

- Dynamic Programming used to find optimal chamber shape, flow rate vs. time, and heat transfer media configuration
- Additional study performed to determine cost-optimal design for future commercialization
- Results give cheapest design that rapidly compresses gas for a specified efficiency

Chamber Property Optimization

- Variable displacement pump used with varying chamber shape, porosity of heat transfer inserts
- Bounds placed on maximum, minimum values of optimization parameters

Cases	Porosity	Flow Rate	Shape	Efficiency	Compression Time	Power Density
1	uniform	constant (43cc/s)	uniform	92%	33s	71.2 kW/m ³
2	uniform	optimal	uniform	92%	10.8s	217.3 kW/m ³
3	optimal	constant (149cc/s)	uniform	92%	9.6s	245.6 kW/m ³
4	optimal	optimal	uniform	92%	3.5s	669.3 kW/m ³
5	optimal	optimal	optimal	92%	1.6s	1470 kW/m ³

Chamber Property Optimization

$$\alpha = \frac{Q_{max}}{V_{cham}} = \frac{1}{sec}$$

All systems are 92% efficient, large pumps do not increase power density

Cost Derivation

- Costs assigned to both compression chamber body and pump based on each component's size
- Chamber thickness calculated using hoop stress
- Cost expressed as function of α:

•
$$J(\alpha) = \left(\frac{[\$]}{[V]} + \frac{Q_{max}}{V_{cham}} \frac{[\$]}{[Q]}\right) \frac{1}{\left(\frac{P}{V}\right)} = \frac{[\$]}{[P]}$$

Cost Optimization

- Large pumps are expensive, dominate system cost
- Chamber shape prefers long, thin, straight tube
- Small pump is cheap, but takes more time to complete process

Flow Intensifier Concept

- Previous work studied "flow intensifier"
- Amplify flow rate early when chamber pressure is low
- Use valves to direct flow to intensifier or chamber
- Intensifier reduces size of pump and associated cost

Flow Intensifier Pump Study

Combined Intensifier/Cost Optimization

- Use small, fixed displacement pump to reduce cost, simplify control
- Easy to track position of flow intensifier piston
- System is efficient, fast, and cheap

Design Iterations at 92% Efficiency

Design	Porosity	Flow	Shape	Cost	Flow Intensifier?	Power Density	Cost/kW
1	Uniform	Constant	Uniform	N/A	No	71.2 kW/m3	\$244.42/kW
2	Uniform	Optimal	Uniform	N/A	No	217.3 kW/m3	\$80.09/kW
3	Optimal	Constant	Uniform	N/A	No	245.6 kW/m3	\$131.71/kW
4	Optimal	Optimal	Uniform	N/A	No	669.3 kW/m3	\$245.33/kW
5	Optimal	Optimal	Optimal	N/A	No	1470 kW/m3	\$248.89/kW
6	Optimal	Optimal	Optimal	Optimal	No	559 kW/m3	\$183.98/kW
7	Optimal	Optimal	Optimal	Optimal	Yes	2941 kW/m3	\$59.30/kW

Optimization of parameters and inclusion of flow intensifier results in significant improvements in power and cost savings

Future Work

- Develop control strategy for repetitive operation
- Design sensors to determine water height in compression chamber
- Study impacts of compressing other gasses
- Determine importance of media insert geometry
- Build and test 5 kW prototype