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Cost Optimization of a Liquid Piston
Compressor/Expander

* Objective: Reduce cost associated with building a
liguid piston compressor/expander for application of a
compressed air energy storage system. Optimization
will result in a system that efficiently and quickly
compresses gas for low system price.




Agenda

* Research Motivation/Background

* Gas Compression Thermodynamics
 Liquid-Piston Compressor Concept
* Optimization of System Parameters
* Flow Intensifier Concept




Research Motivation

Wind energy Solar Energy Electricity Demand

* Objective: develop method
to quickly and efficiently
compress gas to high
pressure for storage

 Want to store energy as
compressed gas and store
CO:2 In compact space
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Thermodynamics

* Adiabatic process is quick but
iInefficient (temperature increases)

 |sothermal process is efficient but
slow

« Want a quick, near-isothermal
process for maximum power
density and efficiency

Pressure

Isothermal

Adiabatic

Pressure

~
=N

Volume

4~ Compression




Power Density and Efficiency
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Liquid Piston Concept

» Water pump (bottom) fills compression
chamber to compress air

* Valves to high pressure storage (red),
low pressure inlet (green)

* Optimize chamber shape, flow rate vs.
time, heat transfer inserts, cost




System Overview
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Heat Transfer Media

« Porous media adds extra
surface area

 Liquid piston can flow through
media

* Inclusion of media reduces air
temperature, improves
efficiency

» 3D printing various designs




System Optimization

* Dynamic Programming used to find optimal chamber
shape, flow rate vs. time, and heat transfer media
configuration

* Additional study performed to determine cost-optimal
design for future commercialization

» Results give cheapest design that rapidly compresses
gas for a specified efficiency
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Chamber Property Optimization

* Variable displacement pump used with varying
chamber shape, porosity of heat transfer inserts

* Bounds placed on maximum, minimum values of
optimization parameters

Cases | Porosity Flow Rate Shape Efficiency | Compression Time | Power Density
1 uniform | constant (43cc/s) | uniform 92 % 33s 71.2 kW/m”
2 uniform optimal uniform 92% 10.8s 217.3 kW/m?*
3 optimal | constant (149cc/s) uniform 92% 9.65 245.6 kW/m®
4 optimal optimal uniform 92% 3.5s 669.3 kW/m?
5 optimal optimal optimal 92 % 1.6s 1470 kW/m?
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Chamber Property Optimization
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Cost Derivation

» Costs assigned to both compression chamber body
and pump based on each component’s size

* Chamber thickness calculated using hoop stress
» Cost expressed as function of a:
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Cost Optimization

* Large pumps are
expensive, dominate
system cost

* Chamber shape prefers
long, thin, straight tube

« Small pump Is cheap, but
takes more time to
complete process
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Flow Intensifier Concept HApe P Al
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Chamber
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* Previous work studied “flow intensifier”

 Amplify flow rate early when chamber i
pressure Is low ‘

 Use valves to direct flow to intensifier or
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Flow Intensifier Pump Study i pisen ai
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Combined Intensifier/Cost Optimization

Average Chamber Temp with Intensifier

350

* Use small, fixed
displacement pump to
reduce cost, simplify 30|
control

* Easy to track position of
flow Intensifier piston

» System is efficient, fast,
and cheap 260
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Design Iterations at 92% Efficiency

Flow Power

1 Uniform Constant Uniform 71.2 KW/m3  $244.42/kKW
2 Uniform  Optimal  Uniform N/A No 217.3 kW/m3  $80.09/kW
3 Optimal Constant Uniform N/A No 245.6 kW/m3  $131.71/kwW
4 Optimal Optimal  Uniform N/A No 669.3 kW/m3  $245.33/kW
5 Optimal Optimal Optimal N/A No 1470 kW/m3  $248.89/kW
6 Optimal Optimal Optimal Optimal No 559 kW/m3  $183.98/kW
7 Optimal Optimal Optimal Optimal Yes 2941 kW/m3  $59.30/kW

Optimization of parameters and inclusion of flow intensifier results in

significant improvements in power and cost savings
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Future Work

* Develop control strateqgy for repetitive operation

* Design sensors to determine water height in
compression chamber

» Study impacts of compressing other gasses
* Determine importance of media insert geometry
* Build and test 5 kW prototype
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